TxtAI
7.0k 499What is txtAI ?
txtAI is an all-in-one embeddings database for semantic search, LLM orchestration and language model workflows.
Embeddings databases are a union of vector indexes (sparse and dense), graph networks and relational databases. This enables vector search with SQL, topic modeling, retrieval augmented generation and more.
Embeddings databases can stand on their own and/or serve as a powerful knowledge source for large language model (LLM) prompts.
txtAI Features
-
🔎 Vector search with SQL, object storage, topic modeling, graph analysis and multimodal indexing
-
📄 Create embeddings for text, documents, audio, images and video
-
💡 Pipelines powered by language models that run LLM prompts, question-answering, labeling, transcription, translation, summarization and more
-
↪️️ Workflows to join pipelines together and aggregate business logic. txtai processes can be simple microservices or multi-model workflows.
-
⚙️ Build with Python or YAML. API bindings available for JavaScript, Java, Rust and Go.
-
☁️ Run local or scale out with container orchestration
txtai is built with Python 3.8+, Hugging Face Transformers, Sentence Transformers and FastAPI. txtai is open-source under an Apache 2.0 license.
Interested in an easy and secure way to run hosted txtai applications? Then join the txtai.cloud preview to learn more.
Why txtai?
New vector databases, LLM frameworks and everything in between are sprouting up daily. Why build with txtai?
- Built-in API makes it easy to develop applications using your programming language of choice
-
Run local - no need to ship data off to disparate remote services
-
Work with micromodels all the way up to large language models (LLMs)
-
Low footprint - install additional dependencies and scale up when needed
-
Learn by example - notebooks cover all available functionality
Use Cases
The following sections introduce common txtai use cases. A comprehensive set of over 50 example notebooks and applications are also available.
Semantic Search
Build semantic/similarity/vector/neural search applications.
Traditional search systems use keywords to find data. Semantic search has an understanding of natural language and identifies results that have the same meaning, not necessarily the same keywords.
Get started with the following examples.
Notebook | Description | |
---|---|---|
Introducing txtai ▶️ | Overview of the functionality provided by txtai | !Open In Colab |
Similarity search with images | Embed images and text into the same space for search | !Open In Colab |
Build a QA database | Question matching with semantic search | !Open In Colab |
Semantic Graphs | Explore topics, data connectivity and run network analysis | !Open In Colab |
LLM Orchestration
LLM chains, retrieval augmented generation (RAG), chat with your data, pipelines and workflows that interface with large language models (LLMs).
Chains
Integrate LLM chains (known as workflows in txtai), multiple LLM agents and self-critique.
See below to learn more.
Notebook | Description | |
---|---|---|
Prompt templates and task chains | Build model prompts and connect tasks together with workflows | !Open In Colab |
Integrate LLM frameworks | Integrate llama.cpp, LiteLLM and custom generation frameworks | !Open In Colab |
Retrieval augmented generation
Retrieval augmented generation (RAG) reduces the risk of LLM hallucinations by constraining the output with a knowledge base as context. RAG is commonly used to “chat with your data”.
A novel feature of txtai is that it can provide both an answer and source citation.
Notebook | Description | |
---|---|---|
Prompt-driven search with LLMs | Embeddings-guided and Prompt-driven search with Large Language Models (LLMs) | !Open In Colab |
Build RAG pipelines with txtai | Guide on retrieval augmented generation including how to create citations | !Open In Colab |
Language Model Workflows
Language model workflows, also known as semantic workflows, connect language models together to build intelligent applications.
While LLMs are powerful, there are plenty of smaller, more specialized models that work better and faster for specific tasks. This includes models for extractive question-answering, automatic summarization, text-to-speech, transcription and translation.
Notebook | Description | |
---|---|---|
Run pipeline workflows ▶️ | Simple yet powerful constructs to efficiently process data | !Open In Colab |
Building abstractive text summaries | Run abstractive text summarization | !Open In Colab |
Transcribe audio to text | Convert audio files to text | !Open In Colab |
Translate text between languages | Streamline machine translation and language detection | !Open In Colab |
Install txtAI
The easiest way to install is via pip and PyPI
Python 3.8+ is supported. Using a Python virtual environment is recommended.
See the detailed install instructions for more information covering optional dependencies, environment specific prerequisites, installing from source, conda support and how to run with containers.
Model guide
See the table below for the current recommended models. These models all allow commercial use and offer a blend of speed and performance.
Component | Model(s) |
---|---|
Embeddings | all-MiniLM-L6-v2 |
| Image Captions | BLIP | | Labels - Zero Shot | BART-Large-MNLI | | Labels - Fixed | Fine-tune with training pipeline | | Large Language Model (LLM) | Mistral 7B OpenOrca | | Summarization | DistilBART | | Text-to-Speech | ESPnet JETS | | Transcription | Whisper |
| Translation | OPUS Model Series |
Models can be loaded as either a path from the Hugging Face Hub or a local directory. Model paths are optional, defaults are loaded when not specified. For tasks with no recommended model, txtai uses the default models as shown in the Hugging Face Tasks guide.
See the following links to learn more.
Powered by txtai
The following applications are powered by txtai.
Application | Description |
---|---|
txtchat | Conversational search and workflows for all |
paperai | Semantic search and workflows for medical/scientific papers |
codequestion | Semantic search for developers |
tldrstory | Semantic search for headlines and story text |
In addition to this list, there are also many other open-source projects, published research and closed proprietary/commercial projects that have built on txtai in production.